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A new method of calculating transient two-phase flow is presented, based on a modifica- 
tion of the implicit multifield (IMF) method, and is applied to channel boiling. The two- 
phase two-fluid approach allows flexibility in physically modelling different flow regimes. 
The numerical finite difference method treats the vapor phase more implicitly than does IMF. 
Detailed analysis of the incremental pressure iterations in the implicit cycle of each time 
step shows that the new pressure profile satisfies approximately a discrete elliptic boundary 
value problem, with adjacent nodes strongly coupled if the time step is large. By accounting 
for this, order-of-magnitude gains in computation time have been achieved. 

The range of hypothetical accidents posed for sodium-cooled fast reactors can lead 
to channel boiling transients which differ widely in nature. On one hand, a rapid 
pump coastdown or flow blockage incident may lead to a very rapid boiling transient, 
voiding a channel in a few seconds or less. On the other hand, a very slow pump 
coastdown, accompanied perhaps by a decrease in reactor power, can lead to boiling 
transients initially so slow as to be almost a succession of steady states. It is in order 
to treat effectively this range of possibilities that the present calculation method was 
developed. 

Two-phase flow models describe boiling liquid flow by conservation equations for 
mass, momentum, and energy. The one-dimensional two-phase two-fluid model 
includes conservation equations in the axial (channel length) direction for each of the 
phases considered as a separate fluid, with terms describing the exchange of mass, 
energy, and momentum between the phases and with the subchannel walls. This 
general model does not assume any particular flow regime; information about the 
flow regime is reflected in the various exchange terms. Thus it is possible to treat a 
variety of flows with the same basic method, by modifying exchange terms. Indeed 
another possible application of the present method is to the physically different problem 
of blowdown from a ruptured PWR coolant pipe [I]. A further attraction of two- 
phase flow modelling is the possibility of treating multiple connected subchannels 
using transmission coefficients between subchannels (cf. [2]), and of full two-dimen- 
sional calculation of large pipes. 
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Two-phase flow calculation methods have long been applied to channel flow 
problems in sodium and water cooled reactors, for example, in the codes FLICA 
[2, 31 and FLINA [4]. These codes use a numerical method which we call directed: 
in each channel, one begins at one end, usually the inlet, and integrates one axial 
level at a time toward the other end. If the boundary conditions involve the outlet 
pressure, a shooting method is used to find, by successive trials, the inlet flow condi- 
tions which when integrated match the desired outlet pressure. Directed methods, 
although well suited for slow to moderately fast transients, are limited in principle 
by the use of the shooting method, which requires that during a time step At, any 
.perturbation at the outlet has time to propagate and be felt at the inlet. This means a 
lower limit to the time step and/or an upper limit on the extent of the two-phase 
region. 

To avoid any such limitation, we shall use what we call a parallel method, wherein 
new time values are found by advancing all the space points simultaneously; boundary 
conditions at both ends of the channel can be satisfied without shooting. Examples 
of parallel methods already in use are the implicit multifield (IMF) technique [5, 61 
and, for single fluids, the method of characteristics and the method of lines. Parallel 
methods are also more susceptible of generalization to two or three space 
dimensions. 

i\nother trait which distinguishes various methods is the degree to which they are 
implicit. Implicit here refers to any expression in the discretized equations involving 
values at the new time t + At, as opposed to explicit terms which use only values 
at the old time. Of course each term which is treated implicitly may add to the 
complexity of the problem: it means another term linking the unknown values 
at t + At. However, implicit methods have the important advantage of being 
stable for larger time steps. Directed methods can be made highly implicit because 
the unknowns are considered at only one node at a time. (This will be discussed 
in detail below). The consequent stability for large At, together with the lower 
limit, explain why implict directed methods are well suited for relatively slow 
transients. 

Parallel methods are more difficult to implement efficiently if cast in totally implicit 
form; existing two-fluid methods such as ICE [7] and IMF use a partially explicit 
treatment. The parallel property removes any lower limit on At, but the greater 
explicitness brings definite upper limits. One usually tries to treat implicitly at 
least those terms having to do with signal propagation at sonic velocity c, so as to 
avoid the limitation At < AZ/C. However, phenomena displaced with a fluid at 
velocity u are treated explicitly, resulting in a bound of the type At 5 AZ/U (or 
perhaps a specific fraction thereof). 

The ideal method would be a fully implicit parallel method, which would in prin- 
ciple have neither an upper nor a lower limit to the time step size. Such a method 
could take long time steps when the flow evolves slowly, and small steps to study 
abrupt local perturbations. In the present work, our goal has been to develop a 
parallel method sufficiently implicit to bypass time step limits related to the sonic 
velocity c and to the vapor velocity U, , leaving only the limit At < ~AZ/ZQ . For the 
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application to low-pressure channel boiling this can be quite helpful, as the vapor 
may travel at a velocity many times that of the liquid. 

In order to implement our method, we have found it necessary to analyze more 
carefully the implicit phase of the time step advancement. As in the IMF technique, 
we determine the new pressures by iteration. As dt is allowed to become larger than 
AZ/C, the pressures at neighboring nodes become strongly interdependent, leading 
to a problem of elliptic type. Our analysis shows how to take this into account, so 
that our procedure is highly efficient for dr > AZ/C. 

The interdependence of nodes can also be thought of in terminology of stiff systems 
of differential equations (e.g., [8, 93)‘. Spatial discretization can reduce any initial 
value problem for a partial differential equation to a system of ordinary differential 
equations [9]; the resulting system of ordinary differential equations is called stiff if 
its spectrum contains a wide spread of eigenvalues, and this in turn can result from 
strong spatial coupling in the original partial differential equations. The method of 
lines [9], if applied to two fluid models, would be a fully implicit parallel method. Our 
procedure accounts for the spatial coupling due to sonic phenomena (but not for 
coupling due to liquid convection) in a simpler way, based on physical properties of 
the flow equations, generalizing techniques already in use for single-fluid compressible 
flow (e.g., [7, p. 2031). 

Before explaining our parallel method, which we have labeled XI (explicit- 
implicit), we shall review some aspects of the two-phase two-fluid flow model. The XI 
method focuses on that part of the channel in two-phase flow. We shall also describe 
the application to sodium channel boiling transients, some of the additional tech- 
niques we have developed for this application, and some sample calculations carried 
out. Substantial further development is planned to fit these methods into a more 
realistic context. 

We shall try to make this presentation self-contained, but the papers of Harlow 
and Amsden [5-71 are nevertheless fundamental and highly recommended. 

TWO-FLUID FLOW MODEL 

Consider a one-component two-phase fluid-a liquid and its vapor-flowing in a 
channel of constant cross section and possibly heated. We shall treat the flow in a 
one-dimensional approximation, so that at each point along the channel we define 
flow variables which represent values averaged over a small volume cutting across the 
channel, and over a short time interval; the numerous bubbles and droplets are 
approximated as interpenetrating continua. Thus at each point we introduce a 
macroscopic pressure P, a void fraction (or vapor volume fraction) 01, average liquid 
and vapor velocities u1 and uy, and average liquid and vapor enthalpies h, and 12,. 
In particular, for the case of annular mist flow in the sodium application, the liquid 
wetting the fuel pin is averaged with the entrained drops. The basic equations 

1 The author owes this remark to one of the referees. 
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describe the conservation of the mass, energy, and momentum of each of the phases. 
For the mass we have 

F + v . (cxpvuv) = se - s, ) 

a(1 ita) pc + v . ((1 - LX) p$lJ = S, - St?, - 

where S, and S, represent mass transfer by evaporation and condensation, respec- 
tively. For the conservation of momentum we pose 

at + v * (~P”UV2) + aVP = u& - uvs, - K(uv - UJ - “fig, (3) 

a(1 -a,“’ pzuz + v * ‘(1 - 0) pzzQ) + (1 - a) VP 

= uvSc - uzSe + K(uv - uz) - (1 - CX) p,g - F. ‘4) 

The term K(u, - uz) represents the momentum exchange by friction between the 
vapor and the liquid. We have assumed that the wall friction law F acts only on the 
liquid, and that the channel is oriented vertically upward. For the momentum 
exchange associated with mass transfer, we suppose that all liquid which is evaporated 
off will enter the vapor flow with velocity u z , while condensing vapor will form into 
droplets of initial velocity uV . In particular, u, = uz at a boiling front. 

For the energy balance we write 

v + v * (afihvuv) - ap 
aat-wv.VP=R+qv, 

a(1 - 4 Pzhz + v . ((1 
at 

- a> Pzhz~z) - (I - a) g - (1 - 4 uz . VP = --R + qz , 

where q = qv + qz is an external source of energy by heating (or sink by cooling), 
with qv acting on the vapor and qz on the liquid. We have neglected conduction within 
each fluid, as well as the energy dissipated by friction. R represents energy exchange 
between the phases. Note that the terms are equal and opposite, but the same is not 
true of the heat transfer associated with mass transfer, where the latent heat intervenes. 

We shall set forth some simplifying physical assumptions used in implementing this 
method; other variants are also possible, and we are not necessarily advocating these 
choices, but simply fixing ideas. 

First we neglect the compressibility of the liquid, so that pz = pl(h,). Second we 
suppose that the vapor always remains at saturation, so that pv = p,,(P) and hv = h”(P). 
Furthermore, we assume boiling only (S = S,) and we introduce a relaxation model 
for the energy Q(= -R - hzSe) given up by the liquid as boiling occurs: 

Q = W”’ - Tz) = T-V - 4 pz(hz,,&> - h3. 
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Thus by transforming the above equations we obtain 

vv E $ + 24” . V/7,] - a [% -k U” * VP] = -Q - S(h, - h,) $ qv ) (5) / 

(1 - a) pt [+ + 211 . Vh,] - (1 - a)[: $ ZLz . VP] = Q + 41. (6) 

Now the liquid energy equation relates the liquid disequilibrium to a relaxation process 
taking place in the moving liquid. The assumption h, = h,(P) changes the use of (5): 
it now expresses a relation between the vapor formation rate S, and the external 
heating qa + qv, with corrections for the axial variation of vapor energy (left side 
of (5)) and liquid energy (left side of (6), via Q in (5)). 

We adopt the following form for the momentum exchange coefficient K(cf. [6]): 

K= 241 - a)(l/r2)[12p + C,rp / u, - zil I], 

where it remains to specify, for a given flow regime, whether r, p, and p are associated 
with one phase or the other or some sort of average. In the case of isolated non- 
deformable spheres of vapor with radius r, and moving in an infinite liquid medium, 
one should have r = r, , t.~ = pL , and p = pz with CD = 0.5; for liquid spheres in a 
continuous vapor medium, the phase subscripts are of course reversed. Our experience 
with channel boiling calculation allows a few remarks. At low pressures, the flow 
regime in long narrow subchannels is likely to be annular or turbulent slug-annular, 
with vapor cavities whose transverse dimensions are on the order of magnitude of the 
subchannel diameter. These vapor regions undergo severe deformation, with liquid 
perhaps breaking up, forming detached chunks or drops which later coalesce. In any 
case, whether the radius r is associated with the vapor cavities or with the liquid 
agglomereations, no value larger than the hydraulic diameter has any direct physical 
interpretation, and we would expect a radius on that scale. Now from our experience 
we can say that neither the vapor nor the liquid viscosity term in K above would 
suffice to explain the observed momentum transfer, and the drag (or interphase 
friction) term must dominate in this flow regime. But at low pressures, the phase 
densities differ by three orders of magnitude, so again from experience we can say that 
p = pV comes much closer to giving the observed momentum transfer than p = p1 . 
This apparently means that the relative motion of the phases at low pressures is 
determined much more by the ease with which liquid chunks pass through vapor by 
bubble deformation, than by the resistance encountered by a bubble pushing through 
liquid. Of course, detailed knowledge of K will require extensive experimental study 
of two-phase iiow regimes in the light of the two-fluid model. 

Naturally, K may be even more complicated than the expression above, or have a 
considerably different form, and the energy transfer constant 7 and the wall friction 
law F may also be functions of the flow variables. A serious effort will be needed to 
adjust these terms to experiments. It should be remembered that while microscopic 
models may be suggestive for the form of K and T, the two-fluid model uses variables 
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which are space-time averages, as indeed are many of the experimentally measured 
values. However, we shall not, and should not need to, account specifically for these 
possible complications in describing the general numerical method which follows. 

XI METHOD 

The two-phase parallel method is applied on a Eulerian mesh over a length of 
channel where the flow is entirely two-phase (0 < 01 < 1). The mesh consists of cells 
of width dz. The state variables a, P, and hr will be edge-centered, that is, discrete 
values will be sought at the edge of each cell. The velocities will be cell-centered. 
Auxiliary values-cell-centered state variables and edge-centered velocities-will be 
found as needed by linear interpolation. (An exception is the liquid volume fraction 
(1 - ol), for which the inverse will be linearly interpolated because for low qualities 
a/(1 - a) is more nearly linear than a). 

First the terms of the six equations (l)-(6) should be classified according to whether 
they will be treated explicitly or implicitly. As indicated above, our goal is to construct 
a method sufficiently implicit that the time step will not be limited by c or uV, but 
only by ur . In order to treat sonic propagation implicitly, we follow the ICE and IMF 
methods and select the pressure gradient term in the momentum equations for implicit 
differencing, as well as the vapor mass equation (which contains the primary manifesta- 
tion of vapor compressibility). On the other hand, by accepting time step limitations 
relating to the liquid velocity, we can treat the liquid mass equation explicitly. As we 
shall see this will in general require that an artificial mass diffusion term be added to the 
liquid mass equation in order to guarantee stability [7, IO]. We may also difference the 
liquid momentum gradient in (4) explicitly. 

Our main change from the IMF differencing scheme is that, in addition to treating 
the momentum coupling implicitly, we treat vapor motion fully implicitly; that is, the 
vapor momentum gradient in Eq. (3) is differenced at time t + dt, along with the 
pressure gradient. This permits time steps larger than Oz/uV . 

Finally, we treat the energy and mass transfer explicitly. Although this is not an 
uncommon choice, it should be noted that theoretically this could conceal another 
limitation on the time step size. For example, if the liquid enthalpy relaxation equation 
is simplified by omitting the relatively small pressure terms, 

it is clear that an explicit difference method would be stable only for dt < T. It turns 
out that in many cases this limitation is not serious, since the energy coupling between 
the phases is not so strong as the momentum coupling. However, one should be aware 
of the possible restriction. 

Let us consider the finite difference equations in detail. The space-time mesh is 
shown in Fig. 1. To avoid overloading equations with subscripts, we have chosen 
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FIG. 1. Space-time mesh and position of variables. 1 

a typical cell whose edge nodes are denoted at time t by a, b and by A, B at time 
t + At. The included cell-centered node is c (resp. C), and a neighboring cell-centered 
node is indicated by d (resp. 0). 

With an explicit/implicit method, each time step calculation falls into two phases: 
the first, explicit phase involves calculations which are done only once in each time 
step for each node; the second, implicit part is an iterative procedure. Starting with 
the energy balance equations, we have the explicit difference equation (from (6) 
divided by (1 - LX)&: 

(h,B - hb)Pf + %C(hlb - &J/AZ - (PI3 - PbMPl&) - dPb - PnMflbAZ) 

= @,,s&d - hlhY?l + 4d’(l - 4 Pd. (7) 

The notation is slightly inaccurate, since the difference (PB - PJ uses not the definitive 
value of Pe but an estimate for PB furnished by extrapolation from previous time 
steps; this amounts to an explicit treatment. This presents no problem since the term is 
not significant compared to the others. We also note that the above difference equation 
is for the case ule >, 0; if ule < 0, we interchange the roles of a and b, and replace 
B by A, so that hl is always calculated in the physically appropriate direction, with 
the flow. Difference equation (7) gives the new liquid enthalpy at each point. 

Next consider the difference equation of vapor energy balance from (5): 

wvtJ@vB - hdAt + uvc@v, - hJl~4 
- 4tpB - PJAt + ~c(Pb - P,XAzl 
+ (1 - 4 Plb~kS&ttPh) - hl/Q7 + mb - h,) = qvb . (8) 

The previous remarks concerning P, and the sign of U, apply. This equation gives the 
new net mass transfer rate S, = (Se - S,),. 

Now the liquid mass can be advanced explicitly using the difference equation: 

[(I - 4 f2B - (1 - 4 PlhlPf 
+ [(I - 4 PZ&Zd - (1 - a,> wtcl/Az = -s, - 4, . (9) 

Here A is the artificial mass diffusion included to stabilize the calculation (see below). 
Since pEB is a function of hl, it is now known, so Eq. (9) gives the new void fraction IX” . 
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There remain some further quantities which can profitably be calculated before 
entering the iterative phase. They include the momentum terms corresponding to 
external forces (gravity, wall friction) and to the gradient of liquid momentum, as well 
as .Kl and K, , where K = Kl + K2 i tr, - u1 1, in the momentum exchange. This 
completes the explicit phase of the time step. 

During the implicit phase, the remaining equations of motion are used to determine 
the new pressure and velocity profiles. This requires an iterative procedure, for which 
we introduce the following notation: values at the beginning of each iteration shall be 
indicated by a circumflex (^), values resulting from the iteration shall be denoted by a 
tilda (“). (Beginning values for the first iteration can be had by linear extrapolation 
from previous time steps, for example; since the convergence of the iterations is very 
rapid, a good starting point is helpful but not crucial.) The iteration procedure can be 
outlined as follows: 

(i) Starting from an estimated pressure profile p,,, , pB ,... we solve the two 
momentum conservation equations for new estimates of the velocities u”,, , &, ,.,. and 
I _ 
uvc 9 U,D )... . 

(ii) From the new velocities we calculate the conservation of vapor mass at 
each point, finding the balances not zero but equal to remainders ?A , ?B ,... . 

(iii) These remainders determine increments 6P, , 6P, ,... for the estimated 
pressures so that pA = pA + 6P, , etc. If the increments are not smaller than a 
specified error E, the new pressure profile pA , pB ,... is used to recommence the itera- 
tion. 

In the third step we introduce a new method of calculating the increments, which is 
essential to success with dt > AZ/C. We now explain these three steps further. 

Step (i) uses the momentum equations to find new velocities. Actually we use 
modifications of Eqs. (3) and (4) Instead of the liquid momentum equation we use a 
total momentum equation which is just the sum of (3) and (4), and offers the conve- 
nience that all the momentum transfer terms drop out. And instead of the vapor 
momentum equation (3), we use a vapor acceleration equation obtained by substitut- 
ing (1) into (3). The finite difference equation for the total momentum is: 

Note that vapor momentum convection is treated explicitly here, but the effect is 
found to be negligible in the total momentum equation because p1 > pv . All terms 
with neither h nor - are known from either the previous time step or the explicit 
phase, so as far as the implicit phase is concerned we have 
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The finite difference equation for the vapor acceleration is: 

OI$VA[(&C - u,,)/At + ~“C@VC - GTJ)/~Zl 
= -cq-(fjB - PA)/AZ - olgpnvgg - (SC + K,c)(&c - J,c) 

- K,, I &c - &, I(& - %d. (11) 

Certain terms are offset from precise space centering for convenience. In particular, 
the velocity gradient involves u” yg and apparently couples the equations for new 
velocities at all the nodes. Our solution procedure avoids possible complication by 
starting at one end where the velocity is a boundary condition (uV = ur = 0 or uz and 
U, known inflow, for example), and moving in sequence, so that in solving for 2?,,, tiVD 
is always known. Despite the practical advantage of this procedure, there are two 
possible objections. One is that the generalization to more than one space dimension 
is not obvious. Another is that the sequential method looks suspiciously like a directed, 
not a parallel method. Against the second criticism there are two defenses: although the 
method is organized in one direction, there is no shooting to match the outlet pressure; 
moreover, in practice the velocity gradient term, while not negligible is less than the 
pressure gradient and momentum exchange terms which are properly centered, and we 
have encountered no difficulty in calculating sonic propagation phenomena with 
At < AZ/C. 

Step (i) makes use of these two momentum difference equations in the following way. 
With an initial pressure profile p, , pB ,... and the corresponding vapor densities 
A A pva , pve ,..., the total momentum equation gives a simple relation between i& and 
z& . This relation may be substituted into the vapor motion equation to eliminate 
z& , leaving a quadratic equation for ilVc . (Here we see it is no burden to treat the 
quatratic K2 term implicitly, since the quadratic degree is already imposed by the 
velocity gradient term). The correct root u” yc is easily determined provided that 
(z& - uve)/uve < 1. If this condition failed, a smaller At would be necessary, but we 
have never encountered this. (The method has not been tried for a calculation starting 
from fluids at rest.) Now returning to the total momentum equation gives i& . 

Step (ii) uses the vapor mass finite difference equation 

From the remainders so calculated, we shall find increments 6P to change the pressure 
profiles P, , PB ,... to an improved profile IT’, , pB ,... . 

The procedure for doing this, step (iii), is based on the variations in vapor densities 
and velocities resulting from a given change in the pressures. Starting from Eqs. (12) 
we calculate 

OIA dpv %Pvc NDfiD 
8rA !zzz 6PA + Az suck- AZ a&D. 

We have dropped the variations of pvc and pvD , which tend to cancel each other out, 
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but variations of uyc are essential. From the momentum equations, we find, for 
example, 

where 

and 

Any change of P,,, will result in changes in the velocities on either side of point A, as 
well as a change in the density pvA ; the changes in velocities will in turn cause a 
change in the remainder r not only at A but at the points on either side of A (B and the 
unnamed point to the left of 0). Note here the suitability of having chosen velocities 
between the pressure nodes. 

Combining these equations, and reverting to index subscripts to identify space 
points, so that A = j, B = j + 1, we find 

Sri e$ [-SPj-, + (2 + e) SPj - SPj+,], 

and 

dr [@z + K’AW - 4 p&l 
dp= bv + &At + K’dz/(qv)l ’ (13) 

’ (14) 

which we take to be the definition of the sonic velocity; note that for At < AZ/U” and 
weak momentum coupling this gives 

cc2 ‘v dpv/dP, 

the equilibrium vapor sonic velocity, while for strong momentum coupling (K’ --j co), 
unless At is very small, 

c2 ‘v (1 - 4 pdpv . @p&W, 

which approximates the two-phase sonic velocity given by Henry et al. [I 11 (cf. [6]). 
Equations (13)-(14) differ from the pressure increment rules in [6], in that we have 

retained the coupling of neighboring pressure increments, whereas the IMF technique 
use a one-point rule accounting only for SrJSP, . Equation (14) shows that this 
approximation is acceptable as long as At < AZ/C. On that time scale, a change in 
pressure is largely taken up in the vapor compressibility. However, the restriction 
At < AZ/C is just what we have been trying to avoid. What happens if At > AZ/C ? 
Clearly, e rapidly becomes quite small, and the coupling of neighboring terms becomes 
more important. 
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To account for this, we use the coupled increment formula (I 3) and solve the system 

1 2+e, -1 0 0 0 2+e, -2 -1 . . . . . . 2+e, -1 0 -1 -1 0 0 0 2+e,-, . . .‘. 0 . . . 1 -1 + 0 0 0 en I= 
(15) 

by Gaussian elimination. (Applying the increment rule in [6] would be similar to 
approximating this matrix by its diagonal.) This is exactly the type of tridiagonal 
matrix one obtains in solving approximately the elliptic boundary value problem for 
one-dimensional diffusion. The diffusion length has been replaced here by its analog 
e1i2 = dz/(c At), which is the number of intervals traversed in time L]t by a signal 
propagating with velocity c. For illustration, we have chosen a left boundary condition 
of known velocities (prescribed inflow), which as a pressure boundary condition is 
analogous to reflection. At the right we have supposed a known pressure. As At 
becomes large, and hence e --f 0, the domain of influence of each point spreads, and 
the domain of strong interaction of each point in the implicit difference scheme 
(viz., the set of zk such that 1 zk - zj / < c At) also spreads, and the implicit phase of 
the calculation becomes more elliptic in nature. This is natural since a parabolic 
problem (generated by an elliptic operator) can be regarded as the limiting case of a 
hyperbolic problem as c -+ co, or conversely, as the time scale considered becomes 
much longer than the spatial dimensions of the problem divided by c. All this is 
known for single-fluid calculations, and we have merely generalized to the two-fluid 
case. To implement this coupled increment method, we precalculate dr/dP and e 
approximately. Since more than one iteration will usually be needed, the Sqj for a 
single iteration have no exact value, and any approximation which does not adversely 
affect the rate of convergence is permissible. Values for dr/dP and e calculated in the 
explicit phase work quite well, and we even limit the calculation to a few nodes and 
interpolate for the others. We also retain an over-/under-relaxation parameter, but 
this seldom has any real effect, since the asymptotic error reduction without accelera- 
tion (dominance ratio) for the coupled increment method is about an order of mangi- 
tude per iteration. This holds true for the examples below, where At is somewhat 
larger than AZ/U, and an order of magnitude or more greater than AZ/C. Rarely are 
more than a few iterations necessary. 

As indicated above, measures must be taken to assure the numerical stability of the 
liquid flow. We have chosen an artificial diffusion of liquid mass in Eq. (9), whose 
magnitude is found from calculating certain truncation error terms according to a 
method of Hirt [lo]. We use 

a”#; A = (a 2 Az2 + z&ax At)((l - a) pz)2 a22 
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where D; = ((1 - a) pr)- l is chosen as the quantity apt to be linear in a stable flow. 
We also tried donor-cell differencing, but found the artificial diffusion method more 
satisfactory. The donor-acceptor technique (cf. [12]) has not been tried. 

LIQUID FLOW INTERFACE 

To use the Xl method of two-phase flow calculation for sodium channel boiling 
transients requires a more complete, realistic model. Such transients start from a 
single-phase liquid flow regime in a long, narrow subchannel. With either a decreasing 
inlet flow rate or an increasing heat flux, liquid temperature rises and boiling may start 
at the end of the heated portion. Two-phase flow creates a larger pressure drop which 
tends to decrease inlet flow, accelerating growth of the two-phase region. Due to the 
low pressure, the two-phase region quickly develops high void fractions; correct 
calculation of the single-phase-two-phase interface(s) is essential to a realistic analysis. 

Introducing this interface into the Eulerian mesh scheme of the XI method poses a 
problem. Adding a mesh point for the interface would create a cell of length dz’ 
which might be very small, upsetting the stability criteria. Recently a smearing tech- 
nique has been proposed for phase interfaces without calculating their location [12], 
but the two-fluid model was not used. We have decided to include the boiling front 
location, and to use a different, unconditionally stable method for the fractional cell. 
Both the liquid flow region and the fractional two-phase cell are solved using a directed 
method, which we shall discuss only briefly. 

Initially the flow is liquid along the entire channel. A directed single-phase integra- 
tion method assumes P, hr , and G = pluz known at time t along the channel, and at 
t + d t at the inlet. Referring back to Fig. 1, the three difference equations of liquid 
mass, momentum, and energy span points A to B for spatial derivatives, and B and b 
for time differences. Velocities are edge-centered. These difference equations provide 
three nonlinear relations for the three unknowns P, hr , ur at B, which can be solved 
since the values at A and b are assumed known. Repeating the process, we advance 
one level at a time to the outlet. In case the outlet pressure is specified as a boundary 
condition, and, say, the inlet flow G,(t f At) is unknown, we use a shooting method: 
an estimate of G, is used to start a trial integration, the resulting outlet pressure is 
compared to the desired value, the difference determines a correction to G, , and the 
channel is integrated again until the error is small. Details are set forth in [13]; 
suffice it to say that with proper care the average number of repeat integrations per 
time step can be reduced practically to zero so the method is quite efficient. 

Now suppose the liquid temperature rises to boiling, for simplicity at the outlet. 
Past the boiling point, the directed method becomes two phase; each trial integration 
is the same, but the last cell, once calculated as if it were all liquid, is then reexamined 
to find by interpolation the exact location of boiling. From this point to the outlet, 
a two-phase directed method does a new integration using the two-fluid model. Then 
shooting is applied as before. 

The two-phase directed method is similar to the liquid directed method, except 
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that each step now involves six finite difference equations supplying six nonlinear 
equations for six unknowns at B, for example P, a:, uI , U, , h, , and S. One procedure 
for solving these equations is given in [ 131, while an improved technique is set forth 
in [l]. 

There is another possible use for the directed method: one can try calculating all 
two-phase cells this way and suppress XI. This will work provided the two-phase 
region does not become too large; it amounts to an extension of FLINA [4] to the 
two-fluid model, and provides and independent check in that the same physical model 
can be calculated with two different numerical methods. Our experience shows the 
agreement is extremely good. 

Much additional work is required in order to supply a realistic context for the sodium 
channel boiling calculation. Aspects already in the computer code, called ALECTO, 
include a simple treatment of conduction from the fuel pin (to give q), and calculation 
of flow reversal at the inlet. Needed are a detailed conduction calculation, treatment 
of the single-phase vapor flow region after dryout, more experience in comparing with 
experiments, and inclusion in a transient reactor analysis system code. An extension 
to handle several subchannels connected by transverse flow might be another interest- 
ing development. 

EXAMPLES 

As mentioned above, a goal of the present work has been to develop methods 
capable of treating a wide range of boiling transients. Some examples chosen here 
demonstrate this capacity. 

An example of a very rapid transient is the propagation of a small pressure pulse 
along a channel with two-phase flow. Although not directly of great interest for 
reactor accident analysis, the test is theoretically important to show that the XI method 
has no lower limit on the time step, and hence no upper limit on the length of two- 
phase flow which can be considered. Directed methods with shooting probably could 
not carry out such a calculation; our directed method alone certainly failed. 

The pressure pulse problem illustrated in Fig. 2 begins from a steady-state two- 
phase channel flow of sodium at atmospheric pressure, with heat flux from the 
surrounding wall. Void fractions are large (< 80 “/,) and the interphase friction is 
such that uv is about 10 times u1 . (This steady state was actually the result of a 
preceding transient calculation during which the inlet flow and outlet pressure were 
fixed in mid-transient, and the calculation was pursued to t = 50 set, at which time 
the flow had become almost completely steady). The boundary conditions are inlet 
flow (a:, trT , uI , h, at left) and outlet pressure (P at right). Figure 2 shows pressure 
profiles along the channel, relative to the initial profile, for several instants following 
the introduction of a I-mbar pressure pulse at the right. The time step between 
profiles is about equal to Ozjc, where c calculated from Eqs. (13)-(14) is about 
600 m/set, very close to (LI~,/~P)~/~. (In the actual calculation there were more than 
one time step between the profiles illustrated). As can be seen, the pulse travels at the 
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FIG. 2. Calculated axial profiles of pressure disturbance for times l(1) 4dt after introducing a 
pulse on the right; At = AZ/C. 

expected rate of about one spatial cell per time step, with strong dissipation (at least 
part of which is numerical due to the implicit differencing). 

Our second example concerns a very slow transient, corresponding to a supposed 
loss of power to the coolant pumping system of a sodium-cooled fast reactor. The 
pumping system is supposed to have a large mechanical inertia. Out-of-pile experi- 
ments have simulated thermohydraulic conditions for such an accident in a single 
subchannel using an electrically heated forced convection loop (Schmitt [14]). 
Figure 3 shows void fraction profiles at various times calculated for one of these out-of- 

FIG. 3. Calculated axial profiles of void fraction at times I = S(4) 20 set after onset of boiling 
for a slow boiling transient in O.S-m-long electrically heated subchannel; in frame 4, net inlet liquid 
flow rate is low but still positive. 
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pile experimental runs, 327 Trl, using a O.&m-long channel heated along its entire 
length. The transient began with the outlet very near boiling and was calculated 
to t = 30 set, by which time the (average) inlet flow fell to less than 0.1 m/set (from 
0.68 mjsec initially) and the void fraction at the outlet exceeded 99 %, (The calcula- 
tion agreed well with available experimental data, but we repeat that much more 
serious empirical evaluation of K and F is badly needed.) At this point in the actual 
experiment the liquid present near the outlet became insufficient to wet the heated 
wall of the channel, and the flow entered a “chugging” phase of periodic dry-out 
and rewetting of the wall, for which the appropriate model has not yet been included 
in the code. It is clear from the calculation that for such a gradual transient dry-out 
will start near the outlet, that is near the end of the heated length. 

Since this transient evolves slowly, long time steps are desirable. The results in 
Fig. 3 were obtained using At = 2 Az/u~,,,~~ (the maximum consistent with the 
restriction due to UL,max for this problem); a calculation using At = Az/uv,max 
differed by a 0.05 sec. offset at the end of 20 sec. The latter calculation took virtually 
twice as long as the former, indicating that computational effort per time step was 
the same in each case. 
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